Kurdistan Regional Government-Iraq Kurdistan Engineers union

Report Title

Steel Truss Design.

By Rebar Mazhar Hassan

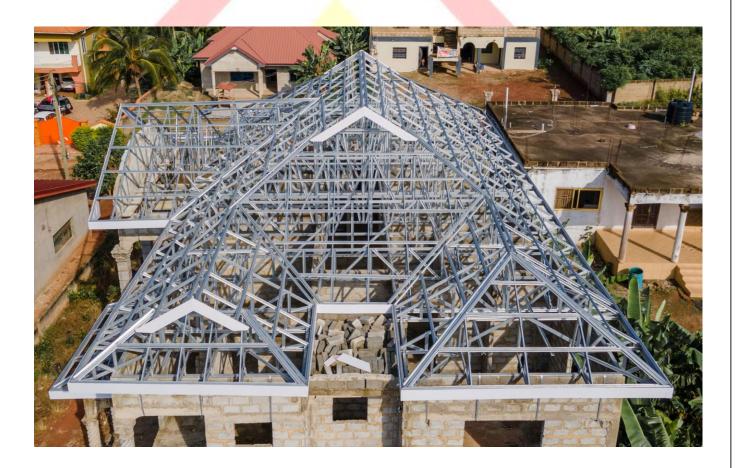
2695

199ĉ

<u>Abstract</u>

194

This study examines the design principles, materials, construction methods, and applications of steel trusses in modern architecture. It emphasizes the value of load distribution, material selection, and structural analysis while demonstrating how steel trusses provide dependable and efficient solutions for large-span constructions. The research provides an overview of the design processes, including everything from basic inspiration to detailed analysis and optimization using state-of-the-art software and analytical methodologies. Steel trusses are beneficial and advantageous in a variety of architectural scenarios, as demonstrated by case studies.

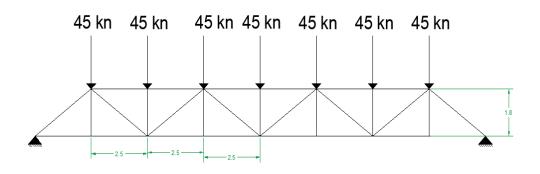

<u>Contents</u>

1 Introduction	4
2 METHODOLOGY	5
3 Case studies	6
Design of the truss	6
1 first step analysis of the members	6
2Design	8
Discussion and Result	12
Conclusion	
Reference	

1 Introduction

Steel trusses are an essential part of civil engineering and architectural projects because of their great load-bearing capability and ability to span huge distances with little material consumption. These structures are perfect for applications like roofs, towers, and bridges because they are made of linked triangle components that distribute stresses efficiently. The purpose of this paper is to present a thorough review of steel truss design and analysis, with an emphasis on important concepts, materials, techniques, and practical applications.

2 METHODOLOGY


Numerous crucial processes are involved in the design of steel trusses, such as comprehensive structural analysis, member selection, load analysis, and connection design. The following is the report's methodology: 1. Literature Review: Examining current studies and recommendations, such as those issued by the American Institute of Steel Construction (AISC), to identify best practices.

2. Load analysis: figuring out what kinds of loads (live, dead, wind, seismic) and how much of each the truss needs to support. 3. Preliminary Design: Creating preliminary member sizes and truss layouts in accordance with load calculations and architectural specifications. 4. Member and Connection Design: To guarantee strength and stability, the right steel sections should be chosen, and joints should be designed. 5. Analytical Methods: For initial force estimates, use techniques like the method of joints and method of sections.

6 Computational Analysis: Employing software tools (e.g., SAP2000, STAAD.Pro, ANSYS)
7 for extensive modeling and analysis.
7 Optimization: Adapting the design to attain structural performance and material economy.

8. Case Studies: Examining particular instances of steel truss usage to highlight design concepts.

3 Case studies

truss from 8 spans each span 2.5 m length, height of truss is 1.8 m ,load

Design of the truss

1 first step analysis of the members

By analyses this truss we found this date for each member

member no	member length m	exile load in kn
1	2.5	-125
2	2.5	-125
3	2.5	125
4	2.5	125

5	2.5	125
6	2.5	125
7	2.5	-125
8	2.5	-125
9	3.08058	-269.551
10	2.5	-375
11	2.5	-375
12	2.5	-500
13	2.5	-500
14	2.5	-375
15	2.5	-375
16	3.08058	-269.551
17	1.8	0
18	3.08058	192.537
19	3.08058	-115.522
20	0	38.507
21	3.08058	38.507
22	0	-115.522
23	3.08058	192.537
24	0	-45
25	1.8	0
26	0	-45
27	0	0
28	1.8	-45
29	0	0

This date analyzed by sap 2000

Biggest member in compression is 500 kn

Biggest member in tension is 192.537 kn

Convert KN to kips

500Kn =112.4Kips

192.537 KN =43.28kips

2Design

Design of compression member:

Pu =112.4kips

The section we chose (Double Angle Section) with

equal legs according to AISC specifications with (1/4) thickness).as shown in fig no 3

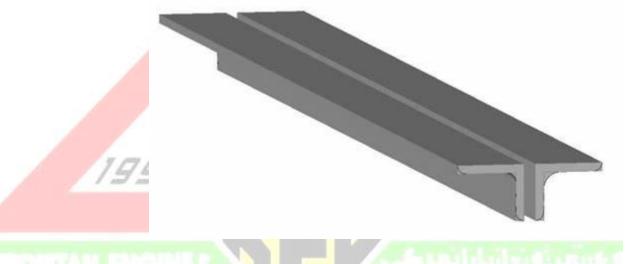


Fig no 3 double angel section

Because all joints are pin so (K)=1

Section 2L 4x4 1/4

$$L = \frac{2.5}{0.3048} = 8.2ft \quad , K = 1$$
$$KL = 1 * 8.2 = 8.2$$

From table 4-8

Section 2L 4x4 ¹/₄ 2L4 * 4 * $\frac{1}{4} \rightarrow \emptyset Pn = 89.5 < 112.4 \therefore not OK$

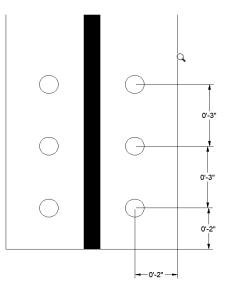
Section 2L 4x4 3/8 $\emptyset Pn = 134$ Check the section from table 4-22 From table 4-22 $\frac{KL}{r} = 80$, Fy = 36 $\emptyset cFcr = 22.7 \rightarrow \emptyset pn = \emptyset cFcr * Ag$ $\emptyset pn = 22.7 * 5.72 = 129.8 > 112.4kips \therefore OK$

$$\frac{KL}{r} = 80 < 4.71 \sqrt{\frac{E}{Fy}} \rightarrow 4.71 * \sqrt{\frac{29000}{36}} = 133.68; \frac{KL}{r} = 80 < 133.68$$

Ok

$$\therefore use \ Fcr = (0.658)^{\frac{fy}{Fe}} * Fy \quad ; Fe = \frac{\pi^2 * E}{(KL/r)^2} = Fe = \frac{\pi^2 * 29000}{(80)^2} = 44.67$$

$$Fcr = (0.658)^{36/44.67} * 36 = 25.69$$


$$\emptyset cPn = \emptyset cFcr * Ag = 0.9 * 25.69 * 5.72 = 121.8 > 112.4 \qquad \therefore OK$$

$$\frac{KL}{r} = 80 < 200 \qquad \therefore OK$$

Check the local buckling: -

The shape (2L4*4*3/8) is not slender (there is not footnote in the dimensions and properties indicate that it is) so local buckling does not have to be investigated.

Design of Tension members:

Pu =192.537 KN =43.28kips

Fy = 36kips; Fu = 58kips

Use double angle section

 $2L4 * 4 * \frac{3}{8} ; Ag = 5.72in^{2}$ 1) $\emptyset pn(yield) = 0.9 * Fy * Ag = 0.9 * 5.72 * 36 = 185.32kips$

Fracture Strength

$$A_n = A_g - 2\left(Area \ of \ one \ bolt \ +\frac{1}{8}\right) * Thickness$$

$$An = 5.72 - \left(2\left(\frac{7}{8} + \frac{1}{8}\right)\right) * \frac{3}{8} = 4.97 \ inch^2$$

From table 1.7

$$\begin{aligned} x' &= 1.13 \quad , \ u &= 1 - \frac{1.13}{6} = 0.81 \\ Ae &= 4.97 * 0.81 = 4in^2 \\ 2) & \phi pn(ultimate) = 0.75 * Fu * Ae = 0.75 * 58 * 4 = 174 > 43 :: OK \end{aligned}$$

Check for block shear

$$Ag(v) = 8 * \frac{3}{8} * 2 = 6in^2$$

$$A(n)(v) = 6 - \left[2.5\left(\frac{7}{8} + \frac{1}{8}\right) * \frac{3}{8} * 2\right] = 4.125in^{2}$$

$$Ag(t) = 2 * \frac{3}{8} * 2 = 1.5in^{2}$$

$$An(t) = 1 - \left[0.5 * \frac{3}{8} * 2\right] = 1.125in^{2}$$

$$1) \ \phi(0.6 * fy * Ag(v) + Fu * An(t)) =$$

$$2) \ \phi(0.6 * Fu * An(v) + Fy * Ag(t)) =$$

$$3) \ \phi(0.6 * Fu * An(v) + Fy * Ag(t)) =$$

$$1) \ 0.75(0.6 * 36 * 6 + 58 * 1.125) = 146.13kips$$

$$2)0.75(0.6 * 58 * 4.125 + 58 * 1.125) = 156.6kips$$

$$4) \ \phi(0.6 * 58 * 4.125 + 36 * 1.125) = 138.1kips$$

$$\therefore All \ of \ this \ results \ > Pu = 43kips \ \therefore \ OK$$

$$L/r = \frac{3.06/0.3048}{1.23} = 100 < 300 \ \therefore \ OK$$

Discussion and Result

From the result of the analysis and design of the members the section 2L4x4 3/8 it is suitable for all members and its best type according to the load on the member economical and safe Below shown same date from analyzed truss by SAP200 that we used.

Table: Active	Degrees of Fr	reedom						
	Tab	ole: Active De	grees of Free	dom				
UX	UY	UZ	RX	RY	RZ			
Yes	Yes	Yes	Yes	Yes	Yes			
			1					
Table: Analys	is Options, Pa	art 1 of 2	1					
	100	12	Table: Ana	alys <mark>is O</mark> ptio <mark>ns,</mark>	Part 1 of 2	51		
Solver	SolverProc	Force32Bit	StiffCase	GeomMod	HingeOpt	NumAThr	MaxFileSi	NumDThr
						eads	ze	eads
Advanced	Auto	No	None	None	In	0	0	0
					Elements			
				<u>8</u>				
Table: Analys	is Options, Pa	art 2 of 2						
Table: Ana	lysis Options	, Part 2 of 2						
NumRThr	UseMMFil	AllowDiff						
eads	es							
0	Program	No						
	Determined							
pg. 12								

Table: Auto Wave 3 - Wave Characteristics - General

 Table: Auto Wave 3 - Wave Characteristics - General

WaveChar	WaveType	KinFactor	SWaterDe	WaveHeig	WavePerio	WaveTheo
			pth	ht	d	ry
			m	m	Sec	
Default	From	1.	45.	18.	12.	Linear
	Theory					

Table: Case - Modal 1 - General

 Table: Case - Modal 1 - General

Case	ModeType	MaxNum	MinNum	EigenShift	EigenCuto	EigenTol	AutoShift
		Modes	Modes		ff		
				Cyc/sec	Cyc/sec		
MODAL	Eigen	12	1	0.0000E+0	0.0000E+0	1.0000E-09	Yes
			A	0	0		

Table: Case - Static 1 - Load Assignments

Table:	Case - Static 1	- Load Assignment	s
Case	LoadType	LoadName	LoadSF
POINT LOAD	Load	POINT LOAD	1.
TOINT LOAD	pattern	I OINT LOAD	

Table: Connectivity - Frame, Part 1 of 2

 Table: Connectivity - Frame, Part 1 of 2

Frame	JointI	JointJ	IsCurved	Length	CentroidX	CentroidY	CentroidZ
				m	m	m	m
1	1	2	No	2.5	1.25	0.	0.
3	2	4	No	2.5	3.75	0.	0.
4	4	5	No	2.5	6.25	0.	0.

Frame	JointI	JointJ	IsCurved	Length	CentroidX	CentroidY	CentroidZ
Trainc	oomer	Jointo	iscuiveu	m	m	m	m
5	5	6	No	2.5	8.75	0.	0.
6	6	7	No	2.5	11.25	0. 0.	0. 0.
7	7	8	No	2.5	13.75	0.	0.
8	8	9	No	2.5	16.25	0.	0.
9	9	10	No	2.5	18.75	0.	0.
10	10	11	No	3.08058	18.75	0.	0.9
11	11	12	No	2.5	16.25	0.	1.8
12	12	13	No	2.5	13.75	0.	1.8
13	13	14	No	2.5	11.25	0.	1.8
14	14	15	No	2.5	8.75	0.	1.8
15	15	16	No	2.5	6.25	0.	1.8
16	16	17	No	2.5	3.75	0.	1.8
17	17	1	No	3.08058	1.25	0.	0.9
18	2	17	No	1.8	2.5	0.	0.9
19	002	4	No	<mark>3.08</mark> 058	3.75	0.	0.9
20	224	15	No	3.08058	6.25	0.	0.9
21	15	6	No	3.08058	8.75	0.	0.9
22	6	13	No	3.08058	11.25	0.	0.9
23	13	8	No	3.08058	13.75	0.	0.9
24	8	11	No	3.08058	16.25	0.	0.9
25	4	16	No	1.8	5.	0.	0.9
26	5	15	No	1.8	7.5	0.	0.9
27	6	14	No	1.8	10.	0.	0.9
28	7	13	No	1.8	12.5	0.	0.9
29	8	12	No	1.8	15.	0.	0.9
30	9	11	No	1.8	17.5	0.	0.9
50	2	11	110	1.0	17.5	0.	0.9

 Table: Connectivity - Frame, Part 1 of 2

Table: Frame Output Station Assignments

E			MayStaSp		
Frame	StationTyp e	MinNumS ta		AddAtElm Int	AddAtPtL oad
	e	la	cg	IIIt	oau
1			m	37	37
1	MaxStaSpc		0.5	Yes	Yes
2	g		0.5		
3	MaxStaSpc		0.5	Yes	Yes
	g				
4	MaxStaSpc		0.5	Yes	Yes
	g				
5	MaxStaSpc		0.5	Yes	Yes
	g				
6	MaxStaSpc		0.5	Yes	Yes
	g				
7	MaxStaSpc		0.5	Yes	Yes
	g				
8	MaxStaSpc		0.5	Yes	Yes
1	195g2	1			<i>7697</i>
9	MaxStaSpc		0.5	Yes	Yes
	g				
10	MinNumSt	3		Yes	Yes
	a				
11	MaxStaSpc		0.5	Yes	Yes
	g				
12	MaxStaSpc		0.5	Yes	Yes
	g				
13	MaxStaSpc		0.5	Yes	Yes
	g				
14	MaxStaSpc		0.5	Yes	Yes
	g				
15	MaxStaSpc		0.5	Yes	Yes
	g				
16	MaxStaSpc		0.5	Yes	Yes
	g				

Table: Frame Output Station Assignments

	Table, Fran	le Output Sta	ation Assignin	ients	
Frame	StationTyp	MinNumS	MaxStaSp	AddAtElm	AddAtPtL
	e	ta	cg	Int	oad
			m		
17	MinNumSt	3		Yes	Yes
	а				
18	MinNumSt	3		Yes	Yes
	а				
19	MinNumSt	3		Yes	Yes
	а				
20	MinNumSt	3		Yes	Yes
	a				
21	MinNumSt	3		Yes	Yes
	a				
22	MinNumSt	3		Yes	Yes
	а		1		
23	MinNumSt	3	-	Yes	Yes
	а				
24	MinNumSt	3	7	Yes	Yes
	a				
25	MinNumSt	3		Yes	Yes
	а				
26	MinNumSt	3		Yes	Yes
	а				
RAMPTH	4.	1.			
UNIFTH	0.	1.			
UNIFTH	1.	1.			
0.011111	1.	1.			

Table: Frame Output Station Assignments

Table: Grid Lines, Part 1 of 2

CoordSys	AxisDi	GridID	XRYZCoo	LineType	LineColor	Visible	BubbleLoc
	r		rd				
			m				
GLOBAL	Х	А	0.	Primary	Gray8Dark	Yes	End
GLOBAL	Х	В	2.5	Primary	Gray8Dark	Yes	End
GLOBAL	Х	С	5.	Primary	Gray8Dark	Yes	End
GLOBAL	Х	D	7.5	Primary	Gray8Dark	Yes	End
GLOBAL	Х	Е	10.	Primary	Gray8Dark	Yes	End
GLOBAL	Х	F	12.5	Primary	Gray8Dark	Yes	End
GLOBAL	Х	G	15.	Primary	Gray8Dark	Yes	End
GLOBAL	Х	Н	17.5	Primary	<mark>Gra</mark> y8Dark	Yes	End
GLOBAL	Х	I	<u>20</u> .	Primary	Gray8Dark	Yes	End
GLOBAL	Y	1	0.	Primary	Gray8Dark	Yes	Start
GLOBAL	Z	Z1	0.	Primary	Gray8 <mark>Dark</mark>	Yes	End
GLOBAL	Z	Z2	1.8	Primary	Gray8Dark	Yes	End
1.	9 <i>92</i>		1		7695		

Table: Grid Lines, Part 1 of 2

Table: Grid Lines, Part 2 of 2

Table: Gr	id Lines, Part 2	2 of 2
and the second	2012 333	
CoordSys	AllVisible	BubbleSiz
		e
		m
GLOBAL	Yes	0.4375
GLOBAL		

Table: Grid Lines, Part 2 of 2

CoordSys	AllVisible	BubbleSiz
		e
		m
GLOBAL		
GLOBAL		
GLOBAL		

Table: Groups 1 - Definitions, Part 1 of 3

GroupName	Selection	SectionCut	Steel	Concrete	Aluminum	ColdForm ed	Stage
ALL	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Table: Groups 1 - Definitions, Part 2 of 3

Table: Groups 1 - Definitions, Part 2 of 3							
GroupName	Bridge	AutoSeism	AutoWind	SelDesStee	SelDesAlu	SelDesCol	MassWeig
		ic		1	m	d	ht
ALL	Yes	No	No	No	No	No	Yes
		NO.					
able: Groups 1 - Do	efinitions. Pai	rt 3 of 3					
Table: Groups 1							
Part 3 of	f 3						

GroupName	Color
ALL	Red

Table: Groups 3 - Masses and Weights

		1	8		
GroupName	SelfMass	SelfWeight	TotalMass	TotalMass	TotalMass
			X	Y	Z
	KN-s2/m	KN	KN-s2/m	KN-s2/m	KN-s2/m
ALL	0.87	8.521	0.87	0.87	0.87

Table: Groups 3 - Masses and Weights

Table: Joint Coordinates, Part 1 of 2

Table: Joint Coordinates, Part 1 of 2							
Joint	CoordSys	CoordTyp	XorR	Y	Z	SpecialJt	GlobalX
		e					
			m	m	m		m
1	GLOBAL	Cartesian	0.	0.	0.	No	0.
2	GLOBAL	Cartesian	2.5	0.	0.	No	2.5
4	GLOBAL	Cartesian	5.	0.	0.	No	5.
5	GLOBAL	Cartesian	7.5	0.	0.	No	7.5
6	GLOBAL	Cartesian	10.	0	0.	No	10.
7	GLOBAL	Cartesian	12.5	0.	0.	No	12.5
8	GLOBAL	Cartesian	15.	0.	0.	No	15.
9	GLOBAL	Cartesian	17.5	0.	0.	No	17.5
10	GLOBAL	Cartesian	20.	0.	0.	No	20.
11	GLOBAL	Cartesian	17.5	0.	1.8	No	17.5
12	GLOBAL	Cartesian	15.	0.	1.8	No	15.
13	GLOBAL	Cartesian	12.5	0.	1.8	No	12.5
14	GLOBAL	Cartesian	10.	0.	1.8	No	10.
15	GLOBAL	Cartesian	7.5	0.	1.8	No	7.5
16	GLOBAL	Cartesian	5.	0.	1.8	No	5.
17	GLOBAL	Cartesian	2.5	0.	1.8	No	2.5

Table: Joint Coordinates, Part 2 of 2

 Table: Joint Coordinates, Part 2 of 2

Joint	GlobalY	GlobalZ	GUID
	m	m	
1	0.	0.	77f10cb4-75c1-4d4c-
			b7b5-d831129fd35d
2	0.	0.	6d9752b7-86b8-45ad-
			88d7-bda2e6fdc196

Conclusion

For this type of truss that we designed the compression member controlled the truss because the load on the compression member larger than the tension so chosen the section 2L4x4 3/8 that controlled all members

Reference

Steel Bridge Competition 2018 Rules, 1st ed., ASCE / AISC, 2017. American Iron and Steel Institute North American Specification for the Design of Cold- Formed Steel Structural Members, 2016.

Steel building design: Introduction to the Eurocodes (P361) The Steel Construction Institute, 2009 Steel building design: Concise Eurocodes (P362) The Steel Construction Institute, 2009 Steel building design: Design data (P363) The Steel Construction Institute and The British Constructional Steelwork Association, 2009 Steel building design: Worked examples – open sections (P364) The Steel Construction Institute, 2009 Handbook of Structural Steelwork (Eurocode Edition) (P366) The British Constructional Steelwork Association and The Steel Construction Institute, 2009 Steel building design: Worked Examples - hollow sections (P374) The Steel Construction Institute, 2009 Steel building design: Fire resistant design (P375) The Steel Construction Institute, 2009 Steel building design: Worked examples for students (Without National Annex values) (P376) The Steel Construction Institute, 2009 Architectural Teaching Resource Studio Guide – Second Edition (P167) The Steel Construction Institute, 2003